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Taking the combined energy-momentum tensor for a perfect fluid, radially 
expanding the radiation and zero-mass scalar field, we investigate their interac- 
tion and obtain five new analytic solutions in a spherically symmetric Einstein 
universe. For the corresponding models various physical and geometrical proper- 
ties are discussed. In one case an interesting equation of  state is derived. 

1. INTRODUCTION 

Objects with large energy output, either in the form of photons or 
neutrinos or both in some phases of their evolution, are very much known 
to exist. Moreover, it is well known that a nonstatic distribution would be 
radiating energy and so it would be surrounded by an ever-expanding zone 
of radiation. The early universe was an undifferentiated soup of matter and 
radiation in a state of thermal equilibrium. During the photon decoupling 
stage part of the electromagnetic radiation behaved as a perfect fluid 
comoving with matter, while part behaved like a unidirectional stream 
moving with fundamental velocity. The discovery of quasistellar objects 
and their huge energy requirements motivated various authors to develop 
a theory of hot, convective, supermassive stars where general relativistic 
effects are important. Einstein showed that the linearized equations of 
gravitational theory revealed the existence of gravitational radiation. The 
energy-momentum tensor for radially expanding radiation was first derived 
by Tolman (1934). Later, Vaidya (1951a,b) generalized it to curvilinear 
coordinates and using it obtained analytic solutions for radiating fluid 
spheres in general relativity. Bayin (1978, 1979) studied the field equations 
for a perfect fluid with a radially expanding radiation. Herrera et al. (1980) 
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obtained models of nonstatic radiating fluid spheres. Heller (1982) studied 
the transition from the dust era to the radiation era (backward in time) in 
terms of precise, formal models for the dust and radiation within the 
standard cosmological model. 

On the other hand, the concept of scalar fields was introduced by Dirac 
(1938) in trying to explore Mach's principle, and thereby obtained a theory 
in which the gravitational constant is no longer a constant, but depends on 
time. Following this concept, Das (1962), Hyde (1963), Das and Agarwal 
(1974), and Gurses (1977) obtained solutions for the coupled gravitational 
and scalar fields. Scalar fields, as they help in explaining the creation of 
matter in cosmological theories, represent matter fields with spinless quanta. 
The study of the scalar meson field in general relativity has been initiated 
to provide an understanding of the nature of  space-time and the gravitational 
field associated with neutral elementary particles of zero spin. Banerjee and 
Santosh (1981), Froyland (1982), and Accioly et al. (1984) studied the 
interactions of  gravitational and scalar fields. 

But less work has been done on studying the interaction among a 
perfect fluid, a field of radially expanding radiation, and a zero-mass scalar 
field. With this in view, I consider five different cases. The first three are 
restricted by the equation of state p = ep by solving different values to e in 
each case; one of them turns out to be that of the dust distribution. In most 
of the cases the models are found to be expanding ones. I also study their 
other properties, such as redshift, particle horizon, and reality conditions, 
and try to evaluate the behavior of the scalar field and the radiation field 
at different ages of the universe in general and of a star in particular. 

2. FIELD EQUATIONS 

We consider the spherically symmetric line element 

ds  2 = exp(v) d t  2 - exp(fl) dr  2 - r 2 dO 2 - r 2 sin20 d~o 2 (1) 

where fl and v are functions of r and t. 
The energy-momentum tensor for a radiating perfect fluid distribution 

interacting with a zero-mass scalar field is given by 

T~j = Zo + Eo § S, ~ (2) 

where Z,j corresponds to the mechanical part of the energy-momentum 
tensor due to matter and can be taken as the energy-momentum tensor for 
perfect fluid, so that 

Z U = (p + p) U ;~  - Pgij (3) 
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is the 

along with 

E o = o'~o~oj (5) 

to itoi = 0 (6) 

oJ~o~ J = 0 (7) 

where ~ is the density of the flowing radiation. 
S U corresponds to the energy-momentum tensor for the zero-mass scalar 

field and is given by 

S i  j = 1 k q~iq~j ---~g~k~O (8) 

where the scalar potential ~ satisfies the Klein-Gordon equation 

gUq~;~ = 0 (9) 

Hence, finally, T~j can be written as 

T~ = ( p + fl )u iu  j - Pgo + O'('OiO)j -{- ~i~j  - - l  guq~kr (10) 

Here we assume comoving coordinate system. 
Then 

u 1 = u 2 =  u 3, u 4 =  exp( -v /2 )  (11) 

As for notation, anywhere in this problem, a prime and an overdot 
denote differentiation with respect to r and with respect to t, respectively, 
and a semicolon followed by a subscript denotes covariant differentiation. 

Now, for the metric (1), the Einstein field equation yields 

( v ' + l ' ~  e_ 0 1 
r r 2] -~=87rp-8~-o-wl~o + e  -~ ~'2+e-~q62 (12) 

( ' ~  ~ v' v,, ~2)  "" .~ .. 
e -0 + ( f l +  f l ' -  fll)~ e-~ = -87rp + e -0 q~,2_ e - ~ 2  

+ -t 2r 2 \ 2  4 4 ] 
(13) 

( /3' 1 ~  e_O + ~  = 87rp + 8~O.094 4_F e_) 3q~,2+ e_~r (14) 
r r2/ 

-~r e-~= 8qT(~176176 7 - 1 \  ,-r q/~b e-~) (15) 

where p is the isotropic pressure, p is the fluid "density and ui 
four-velocity vector, which satisfies the relation 

uiu i =  1 (4) 

E~ corresponds to the energy-momentum tensor for spherically sym- 
metric, radially expanding radiation (Vaidya, 1951a,b) and is given by 



348 Singh 

Again from (6) and (7) we get, respectively, 

0) 4 = 0.) 1 exp 13 - v (16) 
2 

and 

OWlOr + e x p ( - ~ ) o w l + 0 ) ~ [ ~ ( / 3 ' + V ' ) + [ 3 e x p ( - ~ ) l = O o t  

Also from (9) we have 

_ ~ , ,  1 /  , 
e-~(6-e '~o + ~ B  - v ' - ~ ) e - ~ ~  

(17) 

(18) 

3. SOLUTIONS OF THE FIELD EQUATIONS 

3.1 .  C a s e  I 

Here we take up the case p = p. Subtracting (12) from (14), we get 

1 1 , 
r [ 1 - e  -~] =~(f l  - v') (19) 

the solution of which is 

(2o) 
v = (2ao-  3) log r+log(aor+ bo) _ z o o +  co 

r 

where ao, bo and Co are arbitrary constants. 
Subsequently, equations (16)-(18), respectively, reduce to the forms 

W4= r1-%0) 1 exp ( ~ - 2 )  (21) 

Ow---~l-t- r 1-0~ exp - + to a = 0 (22) 
Or Ot \aor + bo r 

[2bo a 0 + ~ )  ~' r3-2aoexp~----~--Co) ~ -  rq~"- (1 + = 0  (23) 

Here (23) gives 

q~ = I r-(l+~176 exp( bo/ r + al) dr+ a2t + a3 (24) 



Radiating Fluid Interacting with Scalar Field 349 

where  a , ,  a2, and  a 3 are arbi t rary  constants.  Again  the solut ion of  (22) is 

to I = bl( aor + bo)-l r -~%-2) exp( bo/ r) (25) 

where  bl is an arbi t rary constant .  Therefore  f rom (21) we get 

to 4=  b~ ( aor + b o ) -  l r - ( 2%-  3) exp( 2bo/ r - Co/ 2 ) (26) 

Thus,  (15) gives 

1 a2b~r_ 2 e x p ( a l - 2 )  (27) o- 4r 

Also f rom (13) we have  

, ( oo oo 
P = 8--~7r \ ~ / [ 4 [  \ r 4aor+b o r2,l 2r \ r  a o r + b o + 7 )  

bo { 2a - 3 ao 2bo\  
+4r(aor+bo) \ Or + a o r + b o + 7 )  

[ ' 2 a o - 3  a 2 4 b o ] )  

- +2(oor+ bo) +TJ  
1 2bo + - -  (aor+ bo)-'r3-2%[r -4 exp(2a l )  - az 2 e x p ( - c o ) ]  e x p - -  (28) 

87r r 

3.2.  Case  I I  

In this case we take p = 3p. Let us cons ider  the scalar  field to be of  the 
fo rm 

q~ = x~( t) + ql(r )  (29) 

Then  (18) reduces  to the fo rm 

q; 
[ Sil +~ (]3- f')d:l ] e x p ( - v ) - [  q~'--~ (~8'- v ' - 4 )  ] exp(-fl  )=O 

which gives 

~- /3  c v - / 3  
= ~ ' =  q~ = 7 e x p - -  (30) ~b=xl  c e x p  2 ' 2 

where  c is an arbi t rary constant .  
N o w  f rom (12) and  (13) we get 

2 4 4 2r 2r \-2 --~----4-]exp(fl-v) 

1 
+~5 [exp(f l )  - 1] = 8~trtOltO 1 exp(]3) -2cZr -4 exp(/3 - v) (31) 
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Again from (15) and (16) we have 

f l - v  
8 ~o-wl oj 1 exp(/3)= ~ exp ( ~  --~) -2c2r-Zexp(---~ --) (32) 

Equations (31) and (32) give 

q- [exp( /3)-  l j r  1---7--71 exp(~ ~) --4 
2 4 4 2~ 2r -\2§ ' 

~exp - - 7  = -  - z c  r e x p / - - ~ - / - 2 c 2 r - 4 e x p ( C l - v )  (33) 
r 

Again from (12) and (14) we get 

~'-e' 2 
r r2 [1 - exp(~)] = 16~'p exp(~) (34) 

Now using this relation in (13), we have 

v" v '2 ~ 'v '  (~ ' -v ' ) t _ [ l_exp(Cl ) ] r_2  ---t 
2 4 4 r 

+c tr ex (e- = 0 (35) 
\ 2  4 4 ]  

Adding (35) and (33), we get 

P" -I 
v '2 ,8'v' 3 , 8 ' - v '  

2 2 2r 
t~ex { t~-~  c2 - -  ~ - 3 c 2 r - 4 e x p ( / 3 - U ) - r  P~- - -~ . ]  - 

"2 �9 �9 ~__/.p 
-(~+--~-.----~)  exp(~8-v)+2c2r-2exp(---~) =0 (36) 

Here we make the substitution 

exp(fl) = AoO"(r)gZ(t) 
exp(v) = Boq~-m(r)k2(t) (37) 

where Ao and Bo are arbitrary constants�9 
Consequently. (36) transforms into 

__ 10-210'2 + 3c  "qto r-41ltm+n m(.__~m )tO_21b,2 m o_ll / f l ,+~_n 2 A g2 
2 \ 2 + 1 ] -  - 2 T - 2Bo k z 

C 2 
l(3no-,O,+2q,-,O,)_(~oo) '/2 g'~o"/2+./2--- 

[Ao~'/2 c2g -=.(,.+.)/2 Ao g2 (~ ~,~ . . . .  + n  

+~,K) T r " - ~ o ~ \ ~ - ~ ) ~  =0 (38) 
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Since this equation is highly nonlinear, we assume 

g(t) = sok(t) (39) 

where So is an arbitrary constant. Then we get 

[ 2 (  m ) mn]tb_2tb,2 m ,_10,, _ _ --2 _ _ _  
. 3r 

3r c 2 s2ao(g g2~lm+n 
+ 2Bo 2 Bo \ g  g2} 

(Ao~a/2g, So~(,.+,)/2+(Ao~ 1/2 
-tVo/ g r  \~o/ c2s~176 (40) 

We further assume 

lc( t) = zk( t) (41) 

where z is a constant. Thus, 

k(t) = exp(cl + zt) (42) 

where ca is an arbitrary constant. Then (40) becomes 

mn] ~-2tO,2 m + 3n tk-atu_c_2_ rn t~-a qp, 
L2 \ 2  } 4r 2 2 

C OAO - -4- -m+n ZS__.~O i~(m+n)/2 
-~ ~ o  r qJ - r 

( Ao~ '12 
+ ~--~0/ C2Sor-2~Y (m+n)/2 = 0 (43) 

Now we take up the case 

m =  - n  (44) 

Then (43) becomes 

-g- -g/ -r-'--, 
3c2sgAor_4_t_(Ao~l/22C2SOr_2 Ao 1/222So ._l 

mBo \ ' - ~ o /  m m m 

which, on integrating twice, gives 

ca rZ c 2 ( 1~ r2 +2zAoso 
log q , = ~  - ~ m  log r--~] mBo r 

C2so(ao) 1/2 3c2s~ao 
m fro log rq- 8mBo r-2+r 

where Cl and c2 are constants of integration. 

(45) 
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Next let us consider, without loss of generality, 

Ao = Bo = c - 1 (46) 

Then, from (45) we have 

0 = e x p / w - r  - r ~ r +  cl+-f-~m r +c~ +r -%/m+rz/2'~ (47) 
L~m m 

Using (47) in (37), we get 

r -('~ +2cl + log(AoS 2) (48) + 

p = 2 z t - m l o g  exp ~ c,-f~-~m/r-f m r+8mr-Z+c2 

3} + 2c~ + log Bo (49) r--(so/m+r2/2m + 

Thus, from (34) we have 

P=8-~ r 8"n'Ao exp ~ c , - r~m/ r - r  m r 

8m r-2+c2 +r-(~~ exp(-2zt -2r  (50) 

Also (17) gives 

{ [ I ( .  1 , ~.2zso 3s~ 2 "l 
r exp c~-v'2---lr - r - - r + : - - - r -  +c2|  

zrn/ m ~m . j 

r-<s~ } m _ 2zt (51) + 

where ca is an arbitrary constant. 
Therefore, from (16) we get 

] 
So~C31expL-2~c~ t ~ m J r  "t- m r t ~ m r  tc21 

q-r-(S~ m -2Zt)  (52) 
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Again  (18) gives 

e-~(6-e-~ ~" - (2 / r )e -~  ~'=O 

the solution o f  which is 

= - d l t  + d2r-l + d3 

where dl ,  dE, and d3 are arbitrary constants.  
From (15) we have 

(ill r)e -~" 2 e - ~ ' f f  = 8~0-0910) 4 

which gives 

0- 
/•x3/2ffl/2•3 

{ o ,-,o ~,O(dldzr-2 zr-i ) r-(1/a)(r2/2+so) 
4zr 

[ ~ (  2-~) r2+2zs~ + r -2 -~- C2 ]}2a 
+ e x p  c~+ 2 a 8a 

[ [ cl 1 2ZSo\ . 
x(c3{r-('/~)(~2/2+~o)+exPL~-~+-~a+---~-)r-t-c 2 

+(3s~\8o ] r -23}"  - 2 z t )  -2 e x p ( - 4 z t - 4 c O  

353 

(53) 

(54) 

3.3. Case III 

For  this case we take e = 0 in the equat ion o f  state 

p = ep 

N o w  in the same manner  as in case I I  we get 

u -/3 ~o' cr -2 exp 13 - u ~b = c exp , = - -  
2 2 

where c is an arbitrary constant .  
Then equat ions (12)-(15),  respectively, become 

r -1 v ' +  r -2 (1 - e t~ ) = -8~o'091091e ~ + c2(1 + r-4e t3-~) 

/ 3 , ,  r c 2 a r "  
2 4 4 2 \ 2  - 4 - - - - 4 - / e ~ - ~  - eO-" 

r-I~3'+ r-2(e ~ - 1) = 87tO e t~ + 8,,/-/-0-0940) 4 e t3 + ca(1 + r-4e ~-~) 

and 

(55) 

(56) 

(57) 

r-1/3 = 8~ro'09109 4 e" + 2c2r -2 (58) 



354 Singh 

Now if we use the substitution 

e ~ =f2(r)g2(t), 

in (56) we get 

h" f 'h '  
h fh 

e ~= h2(r)k2(t) (59) 

I hr \ / / " ~ 2  f 2 g 2  -4 2 f2g2(g--g'lr  ~ h - - ~ ) r - c  = 0  (60) 

Since this equation involves four unknowns, to simplify it we assume a 
relation 

g( t )=sak ( t )  (61)  

where sl is an arbitrary constant. Then (60) becomes 

htt f tht ( f t  ht~--1 s2f21g g,2"~+c2s2f72r-4_c2=O (62) 

h ih 2 U -7) h 

Next, assuming another relation 

~,=z~g (63) 

where Za is a constant, (62) transforms into 

h" f 'h '  /a___ _ _ / / r '  h ' \  2 2 f 2  

h fh \ f - h }  r-l+ c sl ~-~ c 2 = 0 (64) r -4 _ 

Also, from (61) and (63) we get 

k = exp(zl t  + c2) (65) 

where c2 is a constant of  integration. Now, to solve (64), we need one more 
relation between f and h, which we take in the form 

f2  = Ao~b"(r), h 2 = Bo@-m(r) (66) 

where Ao and Bo are arbitrary constants. 
Then (64) becomes 

i]l _ l l]tt, [m+ n \ ~b_2 b, 2 -F-T+1) 
m + n _1__1_,_2C 2 

+ r qJ q J •  
m m 

Now we take up the case 

m = --/,/ 

2Aoc2s~ r-4 bin+, 
mBo 

(67) 

(68) 
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Consequently, (67) takes the form 

if/--1 flirt__ ffy--2~t2 -- 2Ao c2s2 r-4 _ 2c2 
mBo m 

which gives 

{Aoc2sZl c 2 ) 
qJ = y2 exp~ 3 - ~ o  r - 2 + y l r - m r 2  

where Yl and y2 are constants of integration. 
Thus, we get 

whe re  

fl = do + 2Zl t + c2 r 2 -  my~ r - - -  

v = d + 2 z l t + c 2 r  2-my~t  

Aoc2s~ -2 
r 

3Bo 

Aoc2s~ -2 
- - r  

3Bo 

do = log(Aos2y2 ram) + c2, d = log(Boy~ m) + c2 

Now, from (17) we have [using (70) and (71)] 

0~ + exp ( - ~ ) O r  Owl Ot 

+[2c2r_+ 2AocZs 2 r_ 3 / d o - d \ ]  l 
3B-----~ - m y ,  + 2z, expt T ) j w  =0 

the solution of which is 

w = e x p /  ~ -  ~ r - 2 + m y l r - 2 z l  exp r - c Z r  2 

Therefore, from (16) we get 

Fc2s Ao fdo-d  ] 
r176 ~ o  r -2+(1 -2zar )  e x p t - - - 2 - - )  + m y l r - c 2 r 2  

Again using (70) and (71) in (18), we get 

e-~(6_e-t~q~,,_2r -1 e-t3~o, = 0 

the solution of which is 

q~ = d4r-a d5 - d6t 

where d4, d5, and d6 are arbitrary constants. 

355 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 
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Also subtracting (55) from (57), we have 

r - l ( f l  ' -- 1.") -- 2r -2 + 2r-2 e ~ = 8"n'p e ~ 

from which we get 

( Aoc2 s 2 

Again from (62) we have 

t r = - ~  ( 2 c 2 r - 2 - 2 z l r  -1) exp [ - (4z l r  + 1)exp ( - ~ ) - 4 z ,  t - d - d o ]  

(76) 

3.4. Case IV 

From (12) and (13) we have 

/~ , "  v '2 f l '~, '  f l '  ~,' v' / - -  !.-2 
\ 2  q 4 4 2r + 2r r ) e-/3 + 1.--2 

_ (_fl '+/~2_/~ e-~ : 87rtrco, c~  e - ~  '2 
\2  4 4 ]  

Also from (14) and (15) we get 

87rtrtolco = r  e x p ~ - - - ~ )  -2r exp ~ - - - ~ )  

Now (77) and (78) give 

(v " v '2 fl'v' /3' v' ) (_fl'+/32_/3Z~exp(_v)+r_ 2 
"2--~ 4 4 2r 2r r-2 exp(- /3)+\2  4 4 / 

/ 3 e x p ( - ~ - - ~ ) - 2 ~ ' ~ e x p ( - ~ ) - 2 q ~ ' 2 e x p ( - f l )  
r 

a solution of which is 

~8 = log( a r - l t  -1) 

v = log(art  -3) 

= br-1/2t-1/2 

where a and b are arbitrary constants connected by 

a+b2=O 

(77) 

(78) 

(79) 
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Thus, from (17) we get 

which gives 

00) 1 00) l 
. r - i t  - r - f0 )  ~ = 0 

Or Ot 

0)1 = l q o r l / 2  t l / 2  

where qo is an arbitrary constant. 
Therefore, 

034 = �89 r -  1/2 t3 /2  

Again (12) and (13) together give 
a -1  

p = ~ ( 2r - i t  - ar  -2 _ b2r -2) 

From (78) we get 

(80) 

(81) 

(82) 

1 
or = - -  a - 2 q o 2 r - l ( b 2 r  -1 +2t )  (83) 

4~r 

1 
p = ~ (2r -e + 3 b - 2 r  -1 t)  

Also from (14) we have 

(84) 

3.5.  Case  V 

In this case we take/3 to be a function of r only. Then, from (15) and 
(16) we get 

exp ( ~  --~) + 2 ~ ' ~  exp( -v)  = 0 (85) 8,./-1-ooo.)1o) 1 

Again from (12) and (13) we get 

lY' p t2  /3'b" r p + r  -v  + 
t- + r -2 e -~  - r -2 

2 4 4 2 2 

= 2 e - ~  '2 - 8zro'0)10) 1 (86) 

Now (85) and (86) give 

~,, u,2 /3%/ r -x r - i v ,  ) 
t- q - - - d -  -I- r - 2  e -~  - r - 2  

2 4 4 /3'2 2 

= 2e-~ q~'2 + 2e-(~+ ~)/2q~'~b (87) 
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Here we assume 

Then (87) becomes 

Singh 

~'=f~(r)+gl( t)  (88) 

= hi(r) + kl(t)  (89) 

I~_~ r-1/~! r-l~c! 
1 + ~, + j__._.._2~ + r-  2 

h ' l  2 2 

2 2 4 r -2 exp(/3)-2h~ 2 exp 

=2 '1  exp ( - ~ )  (90) 

Since the left-hand side is a function of r only, whereas the right-hand side 
is a function of t only, we can equate both of them to a constant. Thus, 
now (90) separates into 

i r ' '  r-'fl'+-~' 1]. f~, f~2 ] //3'f~ + r-  ~+ r- 2 r -2 exp(/3)- 2h ~2 
h'l  I 4 2 2 2 4 J 

and 

x exp(~---~)  = c 4 (91) 

2/~1 exp( - gl/2) = C 4 (92) 

where c4 is an arbitrary constant. 
Now (91) gives as a solution 

/3 = log(a4r) 

f l  = 3 log(a4r) 
h =�88 1/2} (93) 

-�88 1 log r-�88 1/21og{(c2a42+24) lie 

+ [(c42a~2 + 24) -8a4r]l/Z}+�89 -8a4r] l /E+d 5 

where aa and d5 are arbitrary constants. 
Again (92) gives 

�9 Cgt+d4 c4t+d4 (94) 
g l = - E l o g  7 4  ' kl=2b410g 4b---~ 

where b4 and d4 are arbitrary constants. 
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Thus, we get 

v = 3 l o g ( a j )  - 2 log[1b41(c4t + d4) ] (95) 

1 2 - 2  1/2 q~=a(c4a4 +24) log{(c2a42+24)I/2-[(c]a~2+24)-Sa4r] 1/2} 

_ 1(c2a~2 + 24) 1/2 log{(c2a42 + 24) 1/2 + [(c24a42 + 24) - 8 a4 r] 1/2} 

+�89 + 24) - 8a4r] 1/2_1c4a41 log r 

+ 264 log[lb;l(c4t + d4)] + d5 (96) 

Now using (93) and (95) in (17), we have 

0o21 
4anb4r--~-rr + (c4t + d4) Oo21at + 8a464o21 = 0 

the solution of which is 

to 1 = b2r-2 + b3( c4t + da)-Sa4b'/c4 (97) 

where b2 and b 3 are constants of integration. Therefore, from (16) we get 
4 1 --1 --1 --1 

tO = ~ a  4 b 4 r (c4t+d,~)[b2r-2+b3(c,,t+d4) -8a'b,/c4] (98) 

Also from (85) we have 

1 c4(a,,r)_3[b2r_2+ b3(c4t + d4)_8a4b4/c4]_ 2 0"=8--- ~ 

x { l [ ( c]a22 + 24 ) -- 8a4r] l/2 --�88 r -1} (99) 

Again from (12) and (13) we get 

( r'" ~''2 fl 'v'  1 1 ' 3 1 ) 
-~4 4 4 2 r- ~ + ~ r -  v '+r  -2 e - O - r  -2 

= 16rrp - 8 ~-o-o21 o21 + 2 e - ~  2 

which gives 

5 1 
P = T ~  ct41r-3+ 16~r c4(aar)-2 

[ 1 2 2 a24c4 l] • L~(c4a4 +24--8a4r)l/2--~c4a41r-l-- 
Also from (14) we have 

3 r_2+3 c4a~2r_3(c24a~2+24_8a4r)l/2 _~  a21 (5c2a~2+ 12)r_ 3 
P = 2  8 

(100) 

(101) 
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4. C O N C L U S I O N S  

4.1. Case I 

In this case the line element takes the form 

ds 2 = ( aor + bo)r 2%-3 exp(co-2bo  r- l )  dt 2 

- ( a o r +  bo) r -  l ( dr2 + r 2 doE+ r 2 sin 2 0 de  2) (102) 

where ao, bo, and Co are arbitrary constants. 
Here the fluid pressure (and therefore also the fluid density) comes 

out to be a decreasing function of r. 
The condition to be satisfied for the distribution to be a realistic one is 

p > 0  

which gives 

~[(2ao-  3)r -1 + ao(aor+ bo) -1 + 2bor-2] 2 

i . - 1  

+ - ~ -  [ r -1 + ao( aor + bo) -1 + 2bo r-2] + ~bor- l (  ao r + bo)-a[(2ao - 3)r -1 

+ ao(aor+ bo) -~ +2bo r-2] + r -20+a~ exp(2al +2bo r- l )  

2 2 - 2 a  o - 1  1 - 2  1 2 > a 2 r  exp(2bor - C o ) + ~ ( 2 a o - 3 ) r  + ~ a o ( a o r + b o ) - 2 + 4 b o r  -3 
(103) 

Here the radiation density or as well as the components  (D 1 and to 4 of  
radiation are decreasing functions of  r. 

The null ray is described by 

f I; dt = r l-a~ exp(bor -1 - co/2) dr (104) 
t l  1 

Again as a particular case if bo = 0, we get the scalar potential as 

~0 = a2t -- aol  ea~r-a~ - a 3 

and in this case the scalar field becomes an increasing function of time and 
also an increasing function of r (though not appreciably). 

Also in this particular case we get 

1 [e2a ,r_2~l+%~_a2e_%r2( l_%~+(a2_3ao+3)r_2]  
P = 8 ~ra---~o 

Thus, for this model star the radius R is given by 

p ( R )  = 0  

that is, by 

e:a ,R-2~l+%~-a2  e - % r 2 ~ % - l ) + ( a 2 - 3 a o + 3 ) R - 2 = O  (105) 
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4 .2 .  C a s e  II 

In this case the line element comes out to be 

, o ,  

x exp(2c1-2zt )  (dr2+ r 2 dO:+ r z sin20 d~ 2) (106) 

where cl, c2, m, So, z, Ao, and Bo are arbitrary constants. 
Here the fluid pressure and the fluid density come out to be decreasing 

functions of  r, but they increase with time. 
The condition to be satisfied for the distribution to be a realistic one is 

Aos2o>{r-<So/"+r2/2m)+ [(C1-1- 2-~) r2 

-+- r-2+c2 exp(2zt--2Cl) (107) 

In this case the scalar expansion is given by 

o 

Cm-: r 

+ \ ~ m ]  r -2+ c2 exp ( - z t  - cl) (108) 

Since the expansion is positive here, we see that our model is an expanding 
one, and the rate of expansion decreases with time. 

The scalar field comes out to be an increasing function of r and t both. 
The components o)1 and o) 4 of  radiation are found to be decreasing 

functions of  r and they also decrease linearly with time. 
The spectral shift in wavelength, as measured at the origin, will be 

(A + 6A)/A = (1 + zs) - '  (109) 

where s is the metric interval between the observer and the particle. 
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4.3. Case IIl 

In this case the line element comes out to be 

ds2=exp(c2r  2 - m y l r  A ~  dt 2 
3Bo 

exp(c2r2mylr Aoc2S r2 -~o  -2zx t  + 

x (dr2+ r 2 d O 2 q  - r 2 sin20 dq~ 2) (110) 

where c, d, do, m, s~, Yl, zl, Ao, and Bo are arbitrary constants. 
Here the fluid density comes out to be a decreasing function of r, but 

slowly increases with time. 
The condition to be satisfied for the distribution to be a realistic one is 

{ A~ ~ ) 
e x p ,  ~--B-~o r-2+my,  r - c 2 r 2 - 2 Z l t - d o  <1  (111) 

The scalar expansion in this case comes out to be 

[A~ t-2mylr-2(?2/" 2 d )  0 = 3 z l  exp~ r - z l t -  (112) 

Thus, we see that our model here is an expanding one, but the rate of  
expansion decreases exponentially with time until at t--> ~ it totally stops. 

Here the scalar field decreases with r as well as with time. 
The components w a and to 4 of  radiation are decreasing functions of  r, 

and the density tr of  the flowing radiation is a decreasing function of r and 
t both. 

�9 In this case the spectral shift will be 

(A + 6A)/A = (1 + ZlS) -1 (113) 

where s is the metric interval between the observer and the particle. 

4.4. Case IV 

In this case the line element is 

ds 2 = art -3 dt 2 -  ar- l t  -1 dr 2 -  r 2 dO 2 -  r 2 sin20 dq~ 2 (114) 

where a is an arbitrary constant. 
Here the fluid pressure p and the fluid density p both are decreasing 

functions of  r, but increasing functions of  time. 
The scalar field decreases with r and t both, until at t + oo it almost 

vanishes. 
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The radiation density o- is positive throughout,  and the rate of  emitting 
radiation increases with time. 

For this model we get an equation of state in the form 

b2(p - p  ) = ( aqo)2 C ~ (115) 

where a, b, and qo are arbitrary constants. 
For the distribution to be a realistic one the conditions to be satisfied 

are 

(I) p - O ,  (II)  p > O ,  ( I I I )  p---p 

which respectively give 

2 a - i t  >- (1 + a- ibZ)r  -1 (116) 

2b2 + 3r t>O (117) 

2r -1 + 3b-2t -> a - i t  (118) 

In this case, the spectral shift in wavelength, as measured at the origin, 
will be 

(A + 6A)/A = dst3/2 (119) 

where d5 is an arbitrary constant. 

4.5. Case V 

Here the line element comes out to be 

ds 2 = 16b~2(a4r)3(c4t + d4) -2 dt 2 -  a4r dr 2 -  r2dO 2 -  r 2 sin20 d~ 2 (120) 

where a4, b4, c4, and d4 are arbitrary constants. 
For this model the fluid pressure and the fluid density both are found 

to be decreasing functions of  r. The radius R of  the model star is given by 

r_�88 ~ 11/2~_3.2~-3 - - u ~ 4 j  - - ~ 4 ~ 4  - 5 a ~  1 = 0  (121) 

which is obtained from p ( R )  = O. I f  c4 = 0, we get a static model, for which 
the radius is 5a4 ~. 

Here the expansion factor 0 is found to be zero, reminding us of  the 
steady state model. 

For the distribution to be a realistic one we must have, as in case IV, 

a4c4[(c2a42 + 24)r -1-8a411/2rl/2--4a34r+ 20a24-3c24>--O (122) 

12a4r+3c4a41rl /2[(c24aa2+24)r- l -8a411/2-5c~a42-12>O (123) 

and 

8a2r+c4r1/2[(c2a42+24)r-1-8a411/2-c24a41-16a4>--O (124) 
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Here the scalar field is a decreasing function of  r, but it increases with 
time. The radiation field is also found to be a decreasing function of  r. 

For this model  the spectral shift is 

(A + 8A)/A = cs(c,t+ d4) (125) 

where  c5 is an a rb i t ra ry  constant .  
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